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The adaptive immune system confers protection by generating a
diverse repertoire of antibody receptors that are rapidly expanded
and contracted in response to specific targets. Next-generation DNA
sequencing now provides the opportunity to survey this complex
and vast repertoire. In the present work, we describe a set of tools
for the analysis of antibody repertoires and their application to
elucidating the dynamics of the response to viral vaccination in
human volunteers. By analyzing data from 38 separate blood samples
across 2 y, we found that the use of the germ-line library of V and J
segments is conserved between individuals over time. Surprisingly,
there appeared to be no correlation between the use level of a
particular VJ combination and degree of expansion. We found the
antibody RNA repertoire in each volunteer to be highly dynamic,
with each individual displaying qualitatively different response
dynamics. By using combinatorial phage display, we screened
selected VH genes paired with their corresponding VL library for
affinity against the vaccine antigens. Altogether, this work presents
an additional set of tools for profiling the human antibody rep-
ertoire and demonstrates characterization of the fast repertoire
dynamics through time in multiple individuals responding to an
immune challenge.
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The immune system is able to rapidly sense and respond to a
vast array of invading organisms. Its arsenal contains systems

that are immediately effective against commonly seen patterns
(innate immunity) and systems that are capable of responding to
novel invaders (adaptive immunity). Given the acute nature and
diversity of infections, the immune system must be capable of
rapid recognition of a pathogen, amplification of the response, and
subsequent contraction of the response after the resolution of
the infection. Adaptive immune responses rely on the continuous
selection and amplification of specific clones from an enormous
library of immune receptors (antibodies and T cell receptors).
Specifically, stimulation of B-cell immunity results in the synthesis of
antibodies that are secreted into the blood stream or into the
mucosa as well as the programming of B memory cells that play
a crucial role in the generation of rapid protective responses
upon reinfection.
Currently, many immunology studies depend on characterizing

lymphocyte subsets (e.g., assaying cell-surface receptors) and the
ability to correlate them to encoded genetic information (1).
Recent advances in next-generation sequencing (NGS) (2) have
enabled any DNA-encodable assay to produce massive amounts
of data. Indeed, NGS has enabled unprecedented views into the
immune repertoire, as its immune receptor diversity is geneti-
cally encoded within a complex collection of lymphocytes (3–8).
The present study set out to dissect the rapid dynamics of the

complete human peripheral antibody response against a controlled

immune challenge (vaccination), without the a priori notion of cell
state markers or functions. We vaccinated three individuals with
approved subunit vaccines designed to confer protection to viral
antigens and banked blood samples at multiple time points before
and after the vaccinations. The dynamic behavior of the immune
repertoire in response to the vaccination was analyzed by RT-PCR
of heavy chain V (VH) genes followed by DNA sequencing by
using the 454 platform. We found that the VH gene repertoire is
highly dynamic, and the response in each vaccination is qualita-
tively different. In contrast, we found that each individual uses
the germ-line–encoded library of antibody components in very
similar ways.
Because the immune system is shaped by selective pressures at

the population and somatic levels (9), we observed statistical evi-
dence that the immune system is equally likely to expend energy
on expanding nondiversifying VJ combinations (innate action) as
it is on expanding diversifying and class-switching VJ combinations
(adaptive action). Finally, we synthesized a collection of the
strongest-responding VH genes 1 wk after vaccination, paired them
to their corresponding VL gene libraries by combinatorial phage
display, and tested them for affinity against the vaccine antigens.

Results
Vaccination Time-Course Design. We characterized the antibody
repertoire of three Personal Genome Project volunteers (three
authors, G.M.C., I.B., and F.V.) in response to vaccination.
In 2008, G.M.C. was vaccinated against seasonal influenza,
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hepatitis A, and hepatitis B; in 2009, G.M.C., I.B., and F.V. all
received the seasonal flu vaccine. Blood samples were collected
at different times before and after the vaccination, as specified in
Table 1 and SI Appendix, Fig. S1. One of the goals of the study
was to track the response of the immune system exclusively
through the analysis of the variable gene repertoire. Although we
expect the distribution of immune cell types to remain fairly
constant [immature, ∼5%; naïve, ∼60%; memory, ∼30%; and
plasmablast, 1.8% (10, 11)], we expect that the amount of vac-
cine-specific B cells will fluctuate in a detectable way (i.e., signal
increases while noise remains constant). Total RNA was extracted
from unsorted peripheral blood mononucleated cells and VH
genes were amplified by RT-PCR by using primers that span the
leader exon–exon junction on the V-segment side and sit inside

the constant region on the J side. Therefore, our operational
definition of “antibody repertoire” is derived purely from the
expression levels of the various antibody mRNAs in unsorted
peripheral blood mononucleated cells. This primer set allowed
us to sequence the entire VH gene sequence and to determine
the antibody isotype in the majority of cases. Each sample was
uniquely barcoded by ligation following the PCR and subjected
to Roche 454 sequencing and analysis.

Reproducibility and Quantitation. We obtained ∼4.3 million reads
that successfully aligned to the international immunogenetics
information system (IMGT) germ-line reference database (Table
1 and SI Appendix, Fig. S1). We sequenced one VH gene library
twice (generating sequencing replicates SR1 and SR2) and also
sequenced an independent VH library from the same RNA
sample (technical replicate TR1). Between these three sequencing
runs, 477,118 unique VH genes (i.e., unique antibody sequences)
were identified, of which only 3% were shared between the three
runs and 14% were observed in at least two runs (SI Appendix,
Fig. S2A). However, those shared clones accounted for 59% and
71% of all reads, suggesting that the highly expressed clones are
actually sampled significantly between replicate runs. This was
further validated by a strong correlation between technical rep-
licate samples, confirming technical reproducibility of our ap-
proach (SI Appendix, Fig. S2B). Furthermore, resampling our
data showed that 104 to 105 reads are sufficient to properly
characterize a sample and obtain high correlations between
replicates (SI Appendix, Fig. S2C).

Characteristics of the VH Repertoire.Overall use of the individual V
and J components was highly nonuniform within a given in-
dividual (SI Appendix, Fig. S3). The most frequently observed V
segments were IGHV3-23 (11% of all reads), IGHV3-30 (8%),
IGHV4-59 (7%), and IGHV1-69 (6%), and the most frequent J
segments were IGHJ4 (41%) and IGHJ6 (31%), consistent with
previous studies (7, 12). Use of the germ-line–encoded Variable,
Diverse, and Joining (VDJ) gene library was quite similar across

Table 1. Overview of vaccination experiment

Category

Sequencing data

GMC (%) IB (%) FV (%)

Raw reads 3,752,117 1,220,302 883,079
Filtered reads* 2,261,155 (60) 1,008,912 (83) 703,192 (80)
With isotype 1,462,059 872,110 590,291

IgM 658,154 (45) 428,070 (49) 174,874 (30)
IgG 273,057 (19) 168,321 (19) 174,692 (30)
IgA 415,102 (28) 156,908 (18) 206,089 (35)
IgD 115,668 (8) 119,587 (14) 34,553 (6)
IgE 78 (0) 224 (0) 83 (0)

No. of clones 725,202 526,838 174,593
With ≥3 reads 91,672 41,459 20,881
With ≥ 10000 reads 13 1 4
Seen in ≥2 time points 58,941 12,569 11,850
Seen in all time points 98 87 72

*Size-selected, VJ-filtered.
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Fig. 1. Neighbor-joining tree of V-use vectors. V-use vectors are calculated for each individual–isotype combination, and clustered by using the neighbor-
joining algorithm. Each isotype is colored according to the legend. The tree naturally clusters by individual and then by isotype.
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individuals (e.g., G.M.C. vs. F.V.) and also similar over time
within an individual (e.g., G.M.C. in 2008 vs. 2009). For each
time point, we compute a vector of use for the possible

combinations of the VJ gene segments. Indeed, the Spearman
correlation between VJ-use vectors was consistently high across
time points and individuals (SI Appendix, Fig. S4) and VJ-use

A B

Fig. 2. Probability of clone activation by VJ use. (A) Each clone is labeled according to its VJ use and whether it is naïve (IgM-only with low mutation) or activated
(IgG or IgA with high mutation). The probability of observing naïve or activated clones is estimated assuming a binomial distribution. The line plots the estimated
probability of activation, and bars represent ±1 SD. VJ combinations are ordered according to G.M.C. (B) For each VJ combination, we plot its VJ-use frequency rank
against its rank of probability of activation. This is filtered on VJ combinations for which we obtain at least 100 clones that are classifiable as naïve or activated.
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Fig. 3. Vaccination clone dynamics colored by mutation. (A) Each layer represents a clone. Time is shown by the grid lines on the x axis, and labeled relative
to the two vaccination events. The thickness of each layer is proportional to the frequency of that clone at that time point. Each clone is colored based on the
average mutation level of the corresponding reads (see color bar for B). Only clones seen in at least two time points are shown here. (B) Histogram of the
average mutation level of all of the clones. Each clone is counted once (i.e., clones are not weighted by the number of corresponding reads). Stream graphs
are stacked bar charts with moving baselines; if we did not filter out clones in only a single time point, the total thickness of the graph would add up to unity.
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time series are remarkably stable as well (SI Appendix, Fig. S5).
Finally, we built a neighbor-joining tree by using V-use vectors
(as opposed to VJ-use) of each of the samples to see how V use
is structured. For the most part, V use clustered first by in-
dividual, and then by isotype, implying that, even though V use is
grossly similar across individuals, each individual still has
a unique signature (Fig. 1).
For a majority of the reads, we were able to genetically discern

the antibody isotype. We found that IgM antibody transcripts were
the most abundant (43% of all reads), followed by IgA (27%), IgG
(21%), IgD (9%), and IgE (0.01%; Table 1 and SI Appendix, Fig.
S1). The level of IgA RNA is higher than the amount of IgA
protein typically observed in serum. We believe this is observed
because serum IgA are cleared more rapidly than IgG and also
because the blood carries IgA cells in transit to mucosal sites.
However, the isotype use varied significantly between time points
(SI Appendix, Fig. S6).
Mutation levels were also measured across each of the reads. As

expected, mutation rates were higher in the complementarity de-
termining regions (CDRs) of the antibodies, and were much higher
in IgG and IgA antibodies (SI Appendix, Fig. S7). We further
processed our reads through the Bayesian estimation of antigen-
driven selection (BASELINe) pipeline that estimates selection
pressure on the antibodies (13). Framework regions (FWR) were
universally negatively selected, whereas CDR regions showed
neutral to slightly negative selection on average; however, CDR
selection values were always more positive than FWR selection
values (SI Appendix, Fig. S8).
The CDR3 length distribution we observed was consistent with

IMGT/LIGM data (14) (SI Appendix, Fig. S9; CDR3 extraction is
described in Methods). The 5th and 95th percentiles of the

observed CDR3 lengths are 36 nt and 75 nt, with median length
54 nt (with longest observed CDR3 at 140 nt).
B cells and their associated antibody transcripts can be present

at vastly different quantities, depending on which lymphocyte
subset they are derived from and the degree of expansion of
particular clones. In particular, our method does not allow for
functional differentiation between naïve, memory, or antibody-
secreting cells (ASCs). Therefore, the variation in antibody ex-
pression may influence our view of the immune repertoire (e.g.,
ASCs, although rare in the periphery, exhibit very high expres-
sion of antibodies). Because the VDJ recombination process
introduces so much diversity, the CDR3 sequence effectively
functions as a natural barcode for a particular clone (15). To
functionally define antibody clones, we perform clustering of the
CDR3 sequences and define two reads as derived from the same
clone if their CDR3 sequences are highly similar (same VJ
combination and CDR3 within four nucleotide changes), as it is
unlikely that two independent B cells will generate the same
nucleotide sequence. In total, we observe >1.4 million clones
across all of our data; however, only ∼150,000 clones had more
than three reads each and only 24 clones with >10,000 reads
each. Summed over all three subjects, ∼84,000 clones were seen
in at least two separate time points, whereas only 257 heavy-
chain clones were seen in every time point (SI Appendix, Fig. S1).
Each clone is labeled as “activated” or “naïve” based on its

isotype and mutation level. For each VJ combination, we esti-
mated the probability that a clone is activated (assuming a bi-
nomial distribution) and found that it is reproducibly biased by
VJ use (Fig. 2A). The V regions most likely to become activated
are dominated by IGHV4- and IGHV5-family genes, and the
three individuals have highly correlated biases in the VJ-activa-
tion probabilities (Spearman correlation of ∼0.7). Nevertheless,

20
08

20
09

GMC

IB

FV

10%

10%

10%

Fig. 4. Vaccination clone dynamics colored by onset time. Same as Fig. 3, except clones are colored by onset time. Onset times are ordered spectrally, so that
all clones seen in the first time points are blue, followed by cyan, etc.
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we find that there is virtually no correlation between whether
a gene derived from a particular VJ germ-line combination is
likely to become activated (i.e., subjected to somatic hyper-
mutation and clonally expanded) and whether it is highly used
(Fig. 2B). One hypothesis consistent with these results is that the
immune system is being selected for naïve antibodies that confer
protection. If, instead, the sole function of antibodies is in adap-
tive immunity, it seems wasteful to highly express VJ combinations
that are less likely to become activated. However, we observed
no correlation between the level of VJ combination use and ac-
tivation. We interpret this as consistent with the hypothesis that
the antibody repertoire is shaped by selective forces at population
and somatic time scales. More precisely, use of the VDJ germ-line
library may be optimized for naïve interactions with common
pathogens at the population scale, and the propensity of any
given germ-line gene to somatically mutate may be optimized for
the evolvability of the target organisms. In the context of our
hypothesis, the population of antibodies can be seen to occupy
an innate-adaptive spectrum (9, 16).

Antibody Repertoire Dynamics. Each of the three volunteers was
given the clinically-indicated seasonal flu vaccine, and G.M.C.
was also given boosters to hepatitis A/B in 2008. None of the
subjects were naïve to the antigens at the time of vaccination
(through prior vaccination or infection). Each read was assigned
to a clone and a time point, allowing us to compute time series.
The clone frequencies were tracked across all 38 time points to
produce >20 million clone-frequency measurements (although
the matrix is sparse). In contrast to the relative stability of the VJ
use, antibody clones were highly dynamic and variable across
individuals (Figs. 3 and 4).

We used expression-level/burstiness as a proxy for immune
response strength. Responses to each of the four vaccination
events were qualitatively different: IB produced a “textbook”
response with large proliferating clones 7 d after vaccination; FV
displayed high-frequency clones just before vaccination as well as
large clonal expansions 7 d postvaccination; the repertoire analysis
suggested that G.M.C. showed weak response from his first
vaccination, and his second vaccination appeared to have pro-
duced no high-frequency responses. Taken together, these data
show that individuals can demonstrate a highly varying array of
responses against an identical immune challenge, likely influenced
by prior exposure, age, and other concurrent immune responses
during the course of this experiment, among other factors.
We verified that samples that are closer in time share more

unique clones. We computed the number of shared CDR3
sequences between all 703 possible pairs of samples across all 38
time points, and observed that closer time points within an in-
dividual indeed share a larger number of unique CDR3s (SI
Appendix, Fig. S10). Consistent with this, interindividual com-
parisons between time points showed very little CDR3 overlap.
We also quantified the range of dynamic behavior of the

clones, finding that clones generally fluctuate wildly (SI Appen-
dix, Fig. S11). Interestingly, each individual had a number of
clones that were present at every time point sampled, including
the samples separated by more than 1 y (257 clones total with
median clone frequency 1.1 × 10−4; Fig. 5A). It is possible that
these clones correspond to a long-lived, expanded B-cell memory
population or are chronically responding to antigens (foreign or
auto-) that are always present; indeed, these clones include
sequences that are highly mutated (Fig. 5B).
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Fig. 5. Dynamics of persistent clones. (A) Stream graphs of only clones that are observed in every single time point for a given individual. They are colored as
in Fig. 3. (B) Distribution of average mutation level of the persistent clones.

4932 | www.pnas.org/cgi/doi/10.1073/pnas.1323862111 Laserson et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1323862111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1323862111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1323862111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1323862111/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1323862111


Clone Analysis. It is commonly accepted that expanding clone
populations should arise from an immune challenge approxi-
mately 7 d after flu vaccination (17). More precisely, one would
expect that prevaccination samples are dominated by naïve and
memory cells with a large diversity of specificities, whereas flu-
specific ASCs would be observed 7 d after vaccination. As our
assay does not distinguish between these various cell types, we
anticipated that the day 7 emergence of flu-specific ASCs would
provide a strong enough signal above the noise of irrelevant
memory and naïve cells. Therefore, we picked a subset of the
largest clones from multiple time points before and after vacci-
nation (−2 d, +7 d, +21 d), and synthesized, expressed, and
panned them by phage display. Although it is expected that Ig
expression in Escherichia coli using phage display is inefficient,
we were surprised to find very few strong binders against the
vaccine hemagglutinin antigens. This might also reflect our com-
binatorial pairing strategy, which may not yield a natural pairing
of heavy and light chains. Alternatively, a yeast display approach
may have had a better chance for success for expressing human-
derived antibody chains, as previously demonstrated (18).
Interestingly, even though G.M.C. showed no significant re-

sponse in 2009, the strongest binder (GMC J-065) was found in
his day +7 response of that year. We then applied the Immuni-
Tree algorithm (19) on clone GMC J-065 to infer the most likely
evolutionary pathway (19). The tree was also overlaid with se-
lection values estimated by using the BASELINe algorithm (13)
as well as mutation levels (SI Appendix, Fig. S12). As expected,
most nodes in the tree displayed significant negative selection in
the FWRs, whereas some of the nodes show significant positive
selection in the CDRs. We are currently in the process of ana-
lyzing clones of these trees that are more evolved and show signs
of greater selection pressure.

Discussion
In this study, we generated a high-throughput profile of the
short–time-scale dynamics of the antibody heavy chain reper-
toire. For proper function, the antibody repertoire has the ability
to rapidly expand and contract in a highly dynamic manner,
consistent with our observations. We also found evidence that

the antibody repertoire functions on an innate-adaptive spec-
trum, on which use of the germ-line antibody VDJ library is
simultaneously shaped by population selection and somatic
selection pressures. Indeed, it is apparent that use of the germ-
line library is strongly stereotyped between individuals, but par-
ticular clones are highly dynamic.
Although we were able to glean significant insights into the

immune system from variable gene sequencing alone, it appears
that using the information for predictive purposes still requires
a significantly greater amount of data (20). This is analogous to
the dichotomy between supervised and unsupervised learning in
statistics: our (high-throughput) genetics-only data acquisition in
contrast with (low-throughput) functional labeling. We hope that
such an approach will eventually enable the analysis of immune
function and also mining the “fossil record” (21) of individual
antigen exposures.
Although we have thus far not been able to realize this vision,

we believe this study represents a necessary milestone in a col-
lective effort for the development of new tools to harness the full
potential of the immune system. To that extent, we are focusing
on developing methodologies for high-throughput capture of
paired heavy and light chain sequences from single cells (22).
Coupled with significant advances in DNA synthesis technology
(23, 24), we should soon be able to assay a large immune rep-
ertoire against a large, synthetic library of antigens (e.g., auto-
antigens, allergens, infectious agents) (25–28). Doing so will
further the development of immune repertoire profiling and
facilitate our progress toward the next generation of diagnostics,
vaccines, and personalized therapeutic discovery.

Materials and Methods
Experimental methods are detailed in SI Appendix, SI Materials andMethods.
It includes detailed description of the methods such as: sample collection,
primer design, and sequencing library preparation. It also includes detail of
data processing such as: data processing overview, VDJ alignment process,
sequence clustering, mutation analysis pipeline, analysis of selection pres-
sures, clone phylogeny inference, V-usage clustering, clone synthesis/affinity,
and software tools. Supplementary figures and legends are also detailed.
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